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This paper introduces a new pseudospectral method for solving hyperbolic parlial differen- 
tial equations. This method uses different grid points from previously used pseudospectral 
methods. In fact, the grid points are related to the zeroes of the Legendre polynomials. The 
main advantage of this method is that the allowable time-step is proportional to the inverse of 
the number of grid points I/N rather than to l/N2 (as in the case of other pseudospectral 
methods applied to mixed initial boundary value problems). A highly accurate time dis- 
crettzation suitable for these spectral methods is discussed, 1s’ 1986 Academic Press, Inc. 

I. INTRODUCTION 

This article discusses some aspects of spectral methods for the solution of initial 
boundary value problems. The model problem can be formulated in the following 
way : 

F-G&O, 

U(s, 0) = Lqx), 

where for each t, U(t) belongs to a Hilbert space H so that U(t) satisfies 
homogeneous boundary conditions and G is a linear spatial differential operator. 
There are three commonly used spectral methods for the space discretization of 
(1.1): Galerkin, Tau, and pseudospectral (collocation). Each one of three methods 
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can be characterized by specifying a finite dimensional subspace B, c H and a 
projection operator P,, 

P,: H-+BN, (1.2) 

such that 

lim IIPNu--ull =O. 
N - v 

Using the operator P, results in a semidiscrete approximation of (1.1) 

; UN-G,U,=O, 

while 

u,= P,U; u”,= PNCiO, 

G, = P,vGP,v. 

(I.31 

(1.4) 

(1.5) 

The commonly used basis functions of the subspace B, are related to Chebyshev or 
Legendre polynomials. 

G, is an operator from B, to B,; thus it can be viewed in the numerical 
procedure as an N x N matrix. The formal solution of (1.4) is 

U,(t) = exp( fGN) @,. (1.6) 

When (1.4) is discretized in time by means of an explicit finite difference scheme, the 
time-step is limited by a stability condition. It has been observed that the restriction 
on the time-step 4t, for Chebyshev or Legendre methods is of the form 

In fact when Eq. (1.4) (for G = a/ax) is discretized in space by the pseudospectral 
Chebyshev method and in time by the modified Euler scheme, then one encounters 
the stability condition [l], 

nt&. (1.7) 

The stability condition (1.7) is very stringent and has forced researchers to resort to 
implicit or semi-implicit time marching techniques thus complicating the program 
and reducing the efficiency of the method. The stability condition (1.7) had been 
attributed to the well-known CFL condition. Since the distribution of the grid 
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FIG. 1. Chebychev domain D,. 

points in any pseudospectral method is not uniform and A.x,~~,, = 0( N ‘), then one 
should expect a stability condition of the form Af - Ax,,,, which agrees with (1.7). 
However, spectral methods are global in nature since the solution at time-step n t- 1 
at a certain grid point depends on the solution at time-step n at all the grid points. 
Therefore, an argument based on domain of dependence is not valid here. 

In this paper we analyze a pseudospectral method that does not have this severe 
limitation on the time step. This scheme is based on results obtained by M. 
Dubiner.’ In this paper, Dubiner has carried out a detailed analysis of the spectrum 
of the matrix G, for the inflow problem 

for several matrices G,,, resulting from various spectral approximations. He shows 
that if one uses the Tau method to solve (1.8) with Jacoby polynomials P!;“‘(x) as 
basis functions then the eigenvalues of G,V, jLr, behave asymptotically in the follow- 
ing way: 

/y = O(N2), cz #O, 
a; = O(N), CI = 0. 

(1.10) 

Using this result, we propose to show that it is possible to construct a pseudospec- 
tral (collocation) algorithm for the solution of (1.8) such that the limitation on the 
time-step is of the form 

At=0 ;. 
0 

(1.11) 

ft fohows from Dubiner’s result (1.10) that in the Chebyshev case (E = -$), the 

1 M. Dubiner, 1983, Tel-Aviv University, Tel-Aviv, Israel, personal communication 

581/67/l-10 
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FIG. 2. Legendre domain &. 

domain D, (Fig. 1) in the complex plane which includes all the eigenvalues of GN, 
has the size of order N2. While in the Legendre case (a = 0), the size of the domain 
D, (Fig. 2) is of order N. It is this difference in the size of the domains which results 
in different stability conditions. 

The choice of a = 0 in order to get (1.1 l), is because the inflow is from the right 
boundary.’ When the inflow is from the left boundary, one should choose an 
orthogonal polynomial with p = 0. For the case of inflow from both boundaries, the 
only choice is Legendre polynomial P$O). 

In Section 2 we derive a pseudospectral method that yields the same matrix G, 
that corresponds to the Tau-Legendre method and proves the stability of the exact 
evolution operator exp( G, t ). 

In Section 3 we analyze the solution of the fully discrete problem. Since spectral 
methods in space are highly accurate, it is desirable to have a similar accuracy in 
time as well. A scheme which has this property is explored in Section 4. And a 
slightly different approach for constructing G, is described in Section 5. The 
algorithm based on this appraoch has some advantages over the previous one from 
a programming point of view. On the other hand, instabilities occur when applied 
to a system of hyperbolic equations unless the boundary conditions are modified. 

In Section 6 we describe this phenomenon of instability and try to explain its 
origin. We also prove in this section that the first approach is stable without any 
modification of the boundary conditions. We conclude with Section 7 giving some 
numerical results. 

2. THE NEW PSEUDOSPECTRAL METHOD 

It has been shown [l] that when the Tau method is applied to the constant 
coefficient hyperbolic problem 

u,-u,=o, 

U(x, 0) = Lqx), 

U(1, t)=O, 
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then the numerical approximation U, satisfies exactly the equation 

where 

QJx) are any orthogonal polynomials. This has led many researchers to identify 
the Tau method with a collocation method where the collocation points -rj are 
the zeroes of Q,,,(x) [2]. Note that the .X~S lie in the open interval (-I, 1 j. Tc 
construct this pseudospectral method, we define the following basis functions 

(2.1) 

where 

F.~(x)=(s--Y,)...(x-,xN)(s- 1)=(x--:) Q,,,(s), 

It is easily verified that 

gj(-xk) = sjk, lBj,k<N 

and 
g.,(l)=O. 

(2.2j 

(2.3) 

Thus g,(x) satisfies the right-hand boundary condition. Using gi(x) we get the inter- 
polation polynomial of the function U(X), 

P, U(x) = 2 U(x,) gj(x) (7.4) 
j=l 

and its derivative 

[P, U(x)]’ = 2 U(Xj) g;(x). (2.5) 
j=l 

Now, we solve (1.8) by substituting P,U(x) instead of Uv and satisfying the dif- 
ferential equation at the interior points xj. This, together with the homogeneous 
boundary condition (see remark at the end of the section for the treatment of non- 
homogeneous boundary conditions) results in the following set of equations: 
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whee 
uj = = U(Xj). 

Equation (2.4) can be written in the matrix form 

; ON=GN&,,, 

where UT is the vector .I 

and G, is the matrix 

v,= (U,, u2,..., UN) (2.9) 

(G;vjkj= g;(xk). (2.10) 

For j # k, it is easily verified that 

gT(x -) = (-x/i - 1) QXb) 1 
I L (xj- 1) Q'(xj) G-sj' 

The expression for (G, jjj is more involved. Define 

Ri(Xj=x-xi, 
then for j= k we get 

(x-xi) F)(X) - FN(X) 
(x-xj)2 1 

Q&,+(X-l)Q;(x) =- -- 
x - xj iii 

k#j i#k 

k#j i#kj 

(2.7) 

(2.8) 

(2.11) 

(2.12) 

k#j ifkj k#i (2.13) 
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Thus, we finally have the following expressions for (GM), 

j#k 

j= k. 

' i#j 

From the theory of the zeroes of Jacobi polynomials [6], we have the following 
identity: 

2’ 
cr+l p+l =o 

i=ixj-Si+2(.r,-1)+2(si+ 1) ’ 
i#j 

(2.15) 

where CI and /I are the powers in the expression of the weight function W(X) = 
(1 - x)“( 1 + x)” of the Jacobi polynomials. In the Legendre case we have 0: = p = G; 
thus expression (2.14) can be simplified 

(xk - 1) Q'\r(xk) 1 
(xj- 1) Q’&u,) sk-sj’ 

jfk 
(2.16) 

j= k. 

From the programming point of view it is convenient to define 

(ffN)g= (xi- 1) Q’hi(Xj) 6,, 

then 

where 

j= k, 

To use the operator G,,,, one has to store only two vectors 2, 17 where 

(z.)k=-ykr 

i")k= (2:dXk). 

(2.17) 

(2.18) 

(2.19) 

(2.20) 
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The number of multiplications is 

N+N2+N=N2+2N-N*. (2.21) 

This number should be compared with CN log N in the Chebyshev case (using 
FFT). For small N (up to N = 64) the two results are of the same magnitude. 

The stability proof for the solution of the semidiscrete problem (1.8) is 
straightforward. Define the following vector norm: 

where wj are the weights used in the Gause-Legendre quadrature, namely 

mAv(N’ 
‘;= (1 -.z$)[Q#~)]~’ 

then 

(2.22) 

(2.23) 

(2.24) 

The function u,(a/ax) V,(x) is a polynomial of degree 2N- 1. Therefore, the 
Gauss-Legendre quadrature yields the exact value of the integral. Thus, we get 

i jcl "j Gdxj) = 2 11 l u,~u,~X=[u~,',=u:(l)-Uz,(-1). (2.25) 

Using the boundary condition, U,( 1) = 0, results in 

(2.26) 

Since 

we finally have 

II &AI np = IIWW) uO,llw 

Ilev(GNt)ll w d 1. (2.27) 

However, Dubiner’s paper does not carry out a detailed analysis for the other two 
typical problems: (1) outflow, (2) inflow from both boundaries. It demonstrates 
how this analysis can be done and that the results concerning the asymptotic 
behavior of the eigenvalues will be similar to (1.10). We would like to show how we 
define the operators P, and G, for these two problems. 
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(1) Outj70~~. A model problem for outflow in both boundaries is 

(UN)! + 4 UN), = 0, -l<X<l, 

U,(x, 0) = q&x). 
(2.28) 

This problem is well posed without any boundary conditions. We therefore define 
the basis functions gi(x) as 

where 

QJx)= (x-xl)...(x-xN) (Legendre polynomial) (2.30 j 

and 

consequently 

PNU(X) = 1 U(Xj) g(X); (2.31) 
j=l 

N 
[P, U(x)]’ = 1 U(Xj) g;(x). (2.32) 

j=l 

The elements of the matrix G,. are 

Qk(Xj) -xj j#k 

(G,)jk = 
(II xj - Xk’ 

xz 2 
x;- 1’ 

j= k. 

(2.33) 

Using the similarity transformation 

we get 

and 

G,“= H,G,H,‘, 

xj --> jik 

G&f = 
xj - Xk 

XT / 
x; - 1’ 

j= k. 

(2.34) 

(2.35 a 

(2.36) 
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(2) Inflow from both boundaries. The semidiscrete representation of the PDE 
is 

(UN), - 4 UN), = 0, 

UPAx, 0) = v”,(x), (2.37) 

U,(-1, t)= U,(l, t)=O. 

Since the basis functions have to satify 

we define 

gj(x)2GL 
s’,(Xj) x - Xj’ 

(2.38) 

where 

S,(x)=(x-x,)(x-x,)~~~(x-x,)(x-x,+,)=(x2-l)Q,,,(x), (2.39) 

(x0= -1,x,+,= l), 

and 

PIV U(x) = f Wj) g,(x). 
j=l 

The elements of the matrix G, in this case are 

(xj’- 1) QXxj) xj 

(GN)ik = 
(xi- 1) QX(xk) xi-xk' j#k 

X’ 
- 
XI”-1’ 

j=k 

G, is similar to G,,,, 
G,= H,G,H,’ 

while 

W& = (xi’ - 1) Qi4xj) 6, (2.43 ) 

and 

I 
X- 

I 
xi-xk’ 

j#k 

G)jk = xf - 
x;-1’ 

j=k. 

(2.40) 

(2.41) 

(2.42) 

(2.44) 
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Remark. When the boundary conditions are inhomogeneous, we have to modify 
our representation in the following way: For the right inflow problem we a 
another basis function 

(2.45) 

and we have 

g/v+t(lj= 1; g,+l(.xkj=O. 16k~N. (2.46) 

Thus, instead of (2.8) we get 

while 

and 

,f( t) = U( 1, t) is the boundary condition (2.48) 

(6 is defined by (2.20)). When we have boundary conditions on both sides of the 
interval, we add two basis functions 

g,(x) = sivix) 1 
s:,ox+l’ 

,,+,,x,=g+& 
iV 

(2.50) 

hence 

‘d-l)= 1; &JXk) = 0, 1 ,<kdN+ I (x,+l= 11, 

gw+,(l)= 1; g,+,(xkj=O. Odkdh’ (x,= -1). 
(2.51 j 

Thus, instead of (2.8) we get 

$ 8,=G,&+f(t) P;,+g(t) P”, (2.52) 

while 

f(t) = U( - Lf) 

g(f) = U(L t) 

is the left boundary condition, 

is the right boundary condition 
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(2.53) 

(2.54) 

3. THE FULLY DISCRETE SOLUTION 

The exact solution of (1.4) is 

UJx, t) = exp( tG,) Uo,. (3.1) 

In [4] it has been shown that any explicit time algorithm can be represented as a 
polynomial approximation of the exact evolution operator exp(tG,j; thus the fully 
discrete solution of (1.1) is 

V;(x, t) = H,(tG,j u”,, (3.2) 

where HJz) is polynomial of degree M which converges to eZ in the domain that 
includes all the eigenvalues of the matrix tG,. The eigenvalues of tG, are distinct;’ 
therefore the corresponding eigenvectors are linearly independent and we can deline 
a matrix S,” whose columns are the eigenvectors of G, such that 

U,- Vf= [exp(tG,j - H,(tG,)] UO, = (S,E,S,‘) UO,, (3.3) 

where E, is a diagonal matrix whose elements are 

(EN)k,t = eAcr - H,+Abt), (3.4) 

Therefore, if 
le’ - Hdzjl ,cm 0, zeIpj (3.5) 

while I,,, is the domain in the complex plane which includes all the eigenvalues of 
tG,, then 

II UN - vi3 N.M-c;: 0. (3.6) 

The relation between A4 and N depends mainly on three factors: 

(1) The rate of convergence of H,(z) to e’. 
(2) The size of the domain IN. 

(3) The norm of the matrices S,‘, S,‘. 

In [4] we find that for periodic problems where IIS,(/ = IIS; ljl = 1 (the eigenvectors 
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are orthogonal) one has to choose hl such that the scalar function H,(z) resolves 
the exponent function ei for z E IN. In the case of boundary value problems, the 
analysis is much more complicated since the eigenvectors are not orthogonal. We 
were not able to get an expression for the norms of S, and S;‘. However, 
numerical experiments verify the assumption that asymptotically one can get a suf- 
ficient condition relating M and N by carrying out an analysis based on the concept 
of resolution. 

Consider for example the modified Euler scheme. In the constant coefficients 
case, it is equivalent to the second or Taylor series method 

V”,” I= (I+ At G,v + $(Atj’ G;) V”, (3.7 

or 

I” - (I+ At G N- + ‘(At)* G* Jk U”- N 2 N I\ . (3.8 

If n is the number of time-steps required to march to time level 2’, i.e., 

then 

At = t/n (3.9) 

VN(t)= I’;= I+: (GNt)+$ (GNt)2 
( 

n vv. 

Thus, the numerical evolution operator is 

H,JGNt)= I+: (GNt)+&(G,f)’ 
n 

(M=2nj; (3.10) 

upon substituting z for G,vt we get 

H,(z)= 1 +L+&;* 
( 

Y 
n ! 

(3.11) 

Since 

while 

we get 

R=(exp(@i)(f)i)/t$ Od6dl (3.13 

lei - Hlcr(z)j = n(H,(z))‘“-“j”R + iow order terms 
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substituting (exp(z/n) -R) for [H&z)] ‘In results in the following expression for the 
relative error E 

E 
M 

n[exp(z/n)-R]“P1 R_nRexp(z(n-1)/n) 

exp(z) ev(z) 
(for /El < 1). (3.15) 

Using (3.13) in (3.15) gives 

E-i$exp (H-1): . 
( ) 

Thus, resolution of e’ by H,(z) is achieved when 

(3.16) 

(3.17) 

(The magnitude of s is problem dependent.) From (l.lO), (3.9), and (3.10) it follows 
that in order to satisfy (3.17) we have to choose M such that 

M= O(N3”) (3.18) 

or, equivalently 

(3.19) 

The power 1 is due to the fact that the modified Euler scheme is second order 
accurate in time. A similar analysis for any explicit scheme which is p order 
accurate in time will yield the following condition 

,c,((,(J’+~)@). (3.20) 

It is obvious from this expression that using a scheme which has high accuracy in 
time will lead to the desired condition 

M = O(N); (3.21) 

such a scheme is described in the next section. 

Remark. Since we assume that resolution implies stability, condtions 
(3.18))(3.10) are sufficient but not necessary. It is possible to get stable results while 
M satisfies M= O(N) even for second order in time scheme as shown by the 
numerical results presented in Section 7. 
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4. HIGHLY ACCURATE TOME DISCRETIZATION 

The formal representation of an explicit fully discrete solution of ( 1.1) is given by 
(3.2). Since spectral methods in space are highly accurate, we would like to find a 
polynomial H,L1(z) that will yield high accuracy in time as well. Such a polynomial 
is described in [4] for pure initial value problems. It is based on approximating the 
function t? by orthogonal polynomials. We would like to show how to implement 
this approach in the case of inflow-outflow boundary conditions. 

The main difference between the present case and the periodic one is the 
topological structure of the domain that includes the eigenvalues of tG,ki. 

In the periodic case we have (see remark at the end of the section) 

IReA”l < c, ; lr,.yI f C2(N), (4.1) 

where Ly are the eigenvalues of tG,. (The constant C, does nor depend on N, while 
C,(N) = O(N).) Whereas, in the boundary value case the eigenvalues satisfy’ 

IRe ANI d C,(N); Ir,,,Ayl < C](N). (4.2) 

(Usually C,,JN) = O(N2). In Section 2 we have defined projection operators such 
that the related eigenvalues satisfy Cr.JN) = O(N)). 

Accounting for this fact we have to modify the Orthogonal Polynomials Scheme 
(OPS) which is described in [4]. 

Define 

s = max IRe(A (4.1 E 

R = max I1,,(,?.?)\. (4.4 

Since resolution of e’ by H,,(z) means 

z E D (domain of the eigenvalues) (43) 

for small enough E, we would like to choose HM(z) such that E is small for given 
M. Approximation based on the polynomials dk(~l) defined in [4] (i.e., orthogonal 
polynomials on the imaginary axis) will converge in D but will result in relatively 
large error E. Accounting for the fact that the denominator of E achieves its 
minimum in the left side of D, it is advisable to use a set of polynomials which are 
orthogonal on the line Re(z) = -s. Using this set of polynomials is equivalent to 
approximating e’ through the following change of variables 

Thus 
F=z+s. (4.6) 

e’ = e -se;+5 _ _ e-se-z e-seR(z.R) (4.7) 
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Therefore 

(4.8) 

where 

bk = e -“C,J,(R), (4.9) 

C,= 
1, k = 0, 
2, k3 1. 

(4.10) 

J,(R) is Bessel function of order k. 4k(~~!) satisfy the following recurrence relation 

(4.11) 

Thus, substituting the operator G, 

G, = 4 (tG, + sl) (4.12) 

instead of M: in (4.8) results in the following approximation of the evolution 
operator 

e lGN z HM( tG,,r) = g bkqSk(&) 
k=O 

(4.13) 

and the fully discrete numerical solution is 

f bk’#,dGN) u”v , 1 k=O 

(4.14) 

where 

bk(Gh’) u0,=26Vdk&,(%‘) v”,+dk-,(%I) uo,, 

Numerical experiments show that while using the pseudospectral projection 
operator defined in Section 2 for the solution of the problems: (1) outflow, (2) 
inflow from both boundaries, we have 

s $- R. (4.15) 

Since, in this case the eigenvalues are grouped close to the real axis, the scheme 
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described in [S] (for parabolic problems) will perform better than (4.14). (This 
conclusion is valid for any problem where we have an a priori information about 
the domain D similar to (4.15).) Hence we approximate the evolution operator 
exp(tG,) in the following way: 

where 

exp( fGN) z H,( tG,) = i dk r,(g,), (4.16 j 
k=O 

Ik is modified Bessel function of order k and Tk(x) is Chebyshev polynomial. The 
numerical solution at time level t is 

(4.19) 

Tk( E,) U$ is computed by using the recurrence relation 

Tk(xj=2XTk-1(X)- Tk-2(X), k>,2, 

T,(x) = 1; T,(x) =x. 
(4.20) 

Thus 

Remark. (4.1) has been proven in [S] for the periodic problem 

U,-a(x) u,=o, 

U(x, 0) = L@(x), 

where a(x) = sin 2x. Similar technique can be applied to prove (4.1) when a(x) is 
any second degree trigonometric polynomial. Numerical experiments verify the 
assumption that (4.1) is valid for the general case, when a(x) can be represented as 
a finite degree trigonometic polynomial. 

5. MODIFICATION OF THE PSEUDOSPECTRAL METHOD 

The operator P, defined in Section 2 leads to some complexity when the boua- 
dary conditions are inhomogeneous, as shown by (2.45)-(2.54). It is possible to 
overcome this difficulty by using a slightly different operator P,. 
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Define the basis functions gj(x) 

gjtx) = 
FN(x) 

FN(Xj)(X - Xj)' 
O<j<fv+l (5.1) 

where 

then 

N+I 

uNix) = pN u(x) = 1 u(xj) gji-y) (5.3) 
j=O 

is polynomial of order N+ 1 interpolating U at the points xj, j= 0, I,..., N, N+ 1. 
Its derivative is given by 

N+I 

[PNU(X)]‘= c u(xj)g;(x). (5.4) 
j=O 

By using this projection operator we get the matrix D, (the numerical derivative 
operator) whose elements are 

(Ddkj = 
~N( xj j xk - xj’ kfj 

j= k. 

The matrix D, can be written as 

D,= H&HN~, 

where 

(bN)kj= ’ 

1 
Xk-Xj’ 

xj 
x; - 1’ 

Qlvi-1) 1 -- 
Qd-1) 2’ 

Q’N(1) +A 
QN(l) 2’ 

k#j, 

j=k=O, 

j=k=N+l, 

(5.5) 

(5.6) 

(5.7) 
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and H, is a diagonal matrix 

i 

-2Qd-lL k = 0, 

WNhk = Cv(xd = (~2 - 1) Ql,(x,)> O<k<N+l, (5.8) 

2Qdl), k=N+l. 

Thus 

G,=B,D,B,=B,H,~,H,“B,, (5.9) 

where B, is a diagonal matrix 

(Br.,h = i ; 
Odk<N, 

> k=N+l. 
(5.10) 

Thus, WC find that the algorithm is stable and the cigenvalues of G, are O(N). The 
main difference between the strategy used in Section 2 and the present one is the 
following: In the first case we follow exactly the PDE and satisfy the equation only 
in the ineterior of the domain. The boundary conditions are satisfied by a proper 
choice of the basis functions. In the second case we satisfy the equation in the 
interior and boundary domain while imposing the boundary conditions at the end 
of each time-step. Apparently, the first approach follows the PDE more accurately 
than the second one. This statement will be made clear in the next section where we 
describe the solution of system of equations. 

6. SYSTEM OF HYPERBOLIC EQUATIONS 

Consider the symmetric system 

It is well known [3] that using a matrix of the type D,, defined in the previous scc- 
tion to numerically compute the spatial derivatives leads to instability although the 
differential equations (6.1) are well posed. It is shown in [3] how to stabilize the 
algorithm by adding numerical boundary conditions for the function V(x). This 
approach is based on the following argument. 

581/67/l-11 
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The characteristic variables are U + V and U- V and (6.1) is equivalent to the 
following diagonal set of equations 

(u+ V),=$(U+ V),, 
(U- v)t= -gu- V),, (6.2) 

US V is constant on the characteristic dx/dt = -1 and U- I’ is constant on the 
characteristic dxjdt = 4. Therefore, U + V should be given on the right boundary 
and should be determined by the scheme on the left boundary. Similarly U- V 
should be given on the left boundary and should be determined by the scheme on 
the right boundary. 

The scheme is stabilized by requiring that the values of U + V’ at x = - 1 and 
U - V at x = 1 are not changed as a result of imposing the boundary conditions 
U(1) and U(-1). 

It seems that this instability can be traced to the fact that by using the matrix D, 
we use the PDE in the closed interval instead of the open interval as indicated by 
(6.1). By doing so we get errors on the boundaries for both U(x) and V(X). While 
the error in the function U(x) is immediately corrected by imposing the boundary 
conditions, the error in V(x) penetrates into the system through the characteristics 
and causes the instability. On the other hand, using the approach described in Sec- 
tion 2, we follow exactly the PDE without imposing it on the boundaries, thus we 
do not expect this phenomenon of instability. This assumption is proved by the 
following theorem: 

THEOREM. The solution of the semidiscrete problem 

(6.3) 

discretied by the prqjection operator (2.38)-(2.40) for U and (2.29 j-(2.31) for V, is 
stable. 

ProoJ From (2.38)-(2.40) it follows that U, is a polynomial of degree N+ 1. It 
can be represented as 

N-+ 1 

UN= c Wk(Xj, 
h-=0 

(6.4) 

z I would like to acknowledge my advisor, Professor David Gottlieb, for this proof. 
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where the P,(x)‘s are the normalized Legendre polynomials [I’,( + 1) = ( t- I)“]~ 
From (2.29)-(2.31) it follows that I’, is a polynomial of degree N- 1 and therefore 

N - 1 

v, = 1 fikP/JX). 16.5) 

k=l 

Accounting for (6.4) and (6.5) the polynomials U, and VN satisfy exactly the 
following equations 

(6.6a) 

(6.6’s) 

where E, + , 3 F, are polynomials of degree N + 1, N respectively, which vanish at 
the grid points. Therefore, we can write 

E,, I(x) = (alx + h,) P,&), 

F,(x) = a,P.dx). 

In fact a, ~ b, and a2 are given by 

+2lv+ 1)&J+,, (6.9.b) 

a?= -(2N+ l)IiN+,. (6.9c) 

Equations (6.9) are proved by making use of the following relation satisfied by 
Legendre polynomials [ 61, 

xP,(x) == P,+,(x) +N P,_ l(X) 
2N+ I 2Nf 1 

(6.:Oj 

and the fact that ( U,V), is a polynomial of degree N whose highest coefftcient is 
(2N+ 1) fi,+r. Thus, equating the coefficients of P,,,,, in (6.6a) results in (6.9a). 
Similarly, equating the coefficients of P, in (6.6a) results in (6.9b). Finally, equating 
the coefficients of P, in (6.6b) results in (6.9~). 

Define now the characteristic variables R, and S,V, 

N + I iv- 1 
R,= U,v- V,v= c i,Pk(x) = c f,P,(x) + i,P,(x) + ~2,~+, P,, I(.x), (6.11a) 
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it is easily verified by (6.6), (6.7) that 

(SAJ), = 3SNL + (01x + b, + 4 PA@), (6.12a) 

ucv)r = -#?A + (4x + b, - %I PA@), (6.12b) 

multiplying (6.12b) by 3, adding it to (6.12a) and using the technique of equating 
highest coefficients of P,- , results in 

a, =y$f (s’,-, + 3F,-,). (6.13) 

Next, we use (6.12) to get 

+ 31^l R,(a,x+b,+uz)P,dx. 
-1 

(6.14) 

The first term on the rhs of (6.14) vanishes due to boundary conditions (SX= R$ 
on the boundaries). 

From (6.9), (6.10), (6.1 l), (6.13) and the fact that Legendre polynomials are 
orthogonal, we get 

(6.15) 

where 
d,=j-’ P;(x)dMx=&. 

-1 

On the other hand we have 

(6.17) 

Equating (6.15) and (6.17) gives us 
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(6.19) 

where C is constant in time. 
From (6.11) and (6.19j we get 

N - 2 

1 a,(.$+ 3::) f gr,- l l?‘y- l = c. (6.20) 
k-0 

All the terms on the 1.h.s. of (6.20) are positive; therefore using (6.11) results in 

I~jii(f)l f Cl, O<j< N-2, 

liljt) < c2, O<j<N-1, 

while C,, Cz are constant in time. Due to boundary conditions we have 

Nf 1 
U(-l)= 1 (-i)“li,=O, 

k=O 

N+l 

u(l)= c Lik=o. 

k=O 

Thus for N even 

(6.71 j 

(6.221 

(6.23) 

or 

Since 8, for k= l,..., N- 2 are bounded (6.21), then fi,v is bounded. To show that 
(6.25) implies the boundedness of zi,-, and ti,“,, we make use of (6.9aj and (6.12). 
Equating the two expressions for a, results in 

1 - --u 2 N-l (6.26) 
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tiN-i is bounded; therefore in the limit we get 

do da 
z” Nfl =p-I (for N -+ co j. (6.27) 

Equations (6.25) and (6.27) imply the boundedness of ti,,- 1 and li,,,,, and the 
proof is concluded. Thus, we have proved stability of the semidiscrete problem 
(5.3), but (unfortunately) the domain of the eigenvalues of the related matrix tG, is 
proportional to N2 and not to N as in the scalar case. This large domain will 
evidently result in a severe stability condition 

Hence, for the system case there is no difference between using Chebyshev or 
Legendre polynomials. 

7. NUMERICAL RESULTS 

In this section we describe some numerical experiments whose results agree with 
the theory written in the previous sections. Throughout this section we use the 
following notations: 

N number of gridpoints (resolution in space), 

M degree of numerical evolution operator (resolution in time), 

li eigenvalue of the related matrix tG,. 

The approximation in space is done by using the pseudospectral projection 
operator. The collocating points are the zeroes of the Nth degree polynomial. 

Table I presents the difference in the size of the domain of the eigenvalues while 
using Chebyshev or Legendre polynomials. The matrix tG, whose eigenvalues we 
have computed is related to the problem 

u,- u,=o, 
U(x, 0) = P(x), 

U(1, t) =f(t). 

We have taken t equal to 1. 
For the inflow problem 

U*-xU,=O, 

U(x, 0) = P(x), 

UC - 1, t) = g(t); Ul, t) =f(tL 

(7.1) 

(7.2) 
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TABLE 1 

Chebyshev Legeendrs 
N max l&J maa 11,1 

8 37.57 7.0 
16 150.0 14.4 
32 599.6 29.8 

the results were almost the same as in the previous table. For the third model 
problem of outflow 

u, + x u, = 0, 
U(x, 0) = P(x), 

(7.3! 

there is no difference between Chebyshev and Legendre. In both cases the eigen- 
values are negative real numbers of order N. 

In Table II we compare the amount of work needed to achieve a certain degree of 
accuracy for Chebyshev and Legendre polynomials. The model problem is 

u, - u, = 0, 
fyyx) = ,m - l)> (7.4) 

U(1, t)=O. 

The time marching technique is a fourth order Runge-Kutta. The solution is com- 
puted at time level T= 1.0. 

In Table III we carry out a similar comparison between Chebyshev and Legendre 
polynomials for the inflow problem 

u, - x u, = 0, 
U(x, 0) = exp( l/(-x” - 1)), 

U(-1, t)= U(1, t)=O 

(7.5 1 

The next three tables are related to Section 4. The results presented here illustrate 

TABLE II 

Chebyshev Legendre 

L,error N M N M 

0.32x lo-’ 16 240 16 48 
0.246x 10-l 32 960 32 100 
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TABLE III 

Chebyshev Legendre 

Lz error N M N M 

0.645 x 10 -’ 16 240 16 32 
0.188 x IO-’ 32 960 32 64 

the high accuracy of the OPS compared to the second order Modified Euler 
scheme. Legendre polynomials are used for space approximations. In Table IV, the 
model problem is 

u, - u,r = 0, 

uyx) = (x - l)‘! 

The solution is computed at t = 1.0. 
For the OPS, M was chosen such that the time error is of the same order as space 
error. This table shows clearly the overall spectral rate of convergence of the OPS. 
To compare the OPS to the Modified Euler from the point of view of the amount 
of work needed to achieve a certain degree of accuracy, one can use the fact that 
Modified Euler is second order in time. Thus, for N = 16, for example, an error of 
0.1660 x 1Om-5 is acheved by the Modified Euler scheme when A4 satisfies 

Mz 80(0.1035/0.1680 x 10-5)1”2z 16000 

compared to 36 for OPS. 
The results in the next table are related to the inflow problem. 

u,-xu,=o, 
U(x, 0) = (x2 - 1)3, 

u(-1,0)=u(1,0)=0. 

The solution is computed at t = 1.0. 

TABLE IV 

Modified Euler OPS 

N M Lz error M Lz error 

16 80 0.1035 36 0.1660 x 10-5 
32 160 0.2388 x 10 ’ 72 0.6836 x 1O-9 
64 320 0.5749 x 10 -2 l-t4 0.4247 x 10 I2 
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TABLE V 

Modified Euler OPS 

N M Lz error 114 Lz error 

16 26 0.1785 x 10-l 16 0.1608 x 10-l 
32 52 0.4265 x 10 2 32 0.1994x 10-z 
64 104 0.8230 x 10 - 3 64 0.2004 x 1o-3 

Since the solution is very oscillatory, the advantage of using high order 
approximations (in space and time) is less significant than in the previous case. 

Table describes the refinement procedure for the outflow problem. 

U*+XU,=O, 

U(x, O)= (x2- 1)3. 

The solution is computed at t - 1.0. 

8. CONCLUSION 

This paper has shown that it is possible to construct a pseudospectral method for 
initial boundary value scalar problems with stability condition 

rather than the familiar condition At = 0 ( l/N2 j. This improvement in the stability 
condition does not hold for the case of a system of equations or even for a scalar 
parabolic equation. Still, the fact that using space discretization with 
A.Y,in = O(N-‘) does not necessarily imply that At = O(N-‘) [for a hyperbolic 
equation] gives us hope that there may be a way to overcome this drawback of 
using spectral methods for the numerical solution of nonperiodic problems. 

TABLE VI 

Modified Euler OPS 

N M Lz error A4 L? error 

16 20 0.9378 x 10-x 10 0.8819 x 1o-3 
32 40 0.2463 x 1O-3 20 0.2357 x 10-S 
64 SO 0.6261 x 10 m4 40 0.2242 x 10m’O 
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